127,344 research outputs found

    On Vertically Global, Horizontally Local Models for Astrophysical Disks

    Full text link
    Disks with a barotropic equilibrium structure, for which the pressure is only a function of the density, rotate on cylinders in the presence of a gravitational potential, so that the angular frequency of such a disk is independent of height. Such disks with barotropic equilibria can be approximately modeled using the shearing box framework, representing a small disk volume with height-independent angular frequency. If the disk is in baroclinic equilibrium, the angular frequency does generally depend on height, and it is thus necessary to go beyond the standard shearing box approach. In this paper, we show that given a global disk model, it is possible to develop approximate models that are local in horizontal planes without an expansion in height with shearing-periodic boundary conditions. We refer to the resulting framework as the vertically global shearing box (VGSB). These models can be non-axisymmetric for globally barotropic equilibria but should be axisymmetric for globally baroclinic equilibria. We provide explicit equations for this VGSB which can be implemented in standard magnetohydrodynamic codes by generalizing the shearing-periodic boundary conditions to allow for a height-dependent angular frequency and shear rate. We also discuss the limitations that result from the radial approximations that are needed in order to impose height-dependent shearing periodic boundary conditions. We illustrate the potential of this framework by studying a vertical shear instability and examining the modes associated with the magnetorotational instability.Comment: 24 pages, 8 figures, updated to match published versio

    Unified life detection system: A concept

    Get PDF
    Systematic investigation of techniques and hardware which could be utilized in life detection system has resulted in identification of group of candidate concepts and selection of "unified system". Theme of concept permits greatest flexibility in procedural details for experiments which can be performed in individual ampules

    Ejaculate allocation by male sand martins, Riparia riparia

    Get PDF
    Males of many species allocate sperm to ejaculates strategically in response to variation in the risk and intensity of sperm competition. The notable exception is passerine birds, in which evidence for strategic allocation is absent. Here we report the results of a study testing for strategic ejaculate allocation in a passerine bird, the sand martin (Riparia riparia). Natural ejaculates were collected from males copulating with a model female. Ejaculates transferred in the presence of a rival male contained significantly more sperm than ejaculates transferred in the absence of a rival male. There was no evidence that this difference was due to the confounding effects of the year of ejaculate collection, the identity of the model female, the colony, the stage of season or the period of the day in which ejaculates were collected. A more detailed examination of the ejaculate patterns of individual males, achieved by the DNA profiling of ejaculates, provided additional evidence for strategic allocation of sperm

    VSAERO analysis of tip planforms for the free-tip rotor

    Get PDF
    The results of a numerical analysis of two interacting lifting surfaces separated in the spanwise direction by a narrow gap are presented. The configuration consists of a semispan wing with the last 32 percent of the span structurally separated from the inboard section. The angle of attack of the outboard section is set independently from that of the inboard section. In the present study, the three-dimensional panel code VSAERO is used to perform the analysis. Computed values of tip surface lift and pitching moment coefficients are correlated with experimental data to determine the proper approach to model the gap region between the surfaces. Pitching moment data for various tip planforms are also presented to show how the variation of tip pitching moment with angle of attack may be increased easily in incompressible flow. Calculated three-dimensional characteristics in compressible flow at Mach numbers of 0.5 and 0.7 are presented for new tip planform designs. An analysis of sectional aerodynamic center shift as a function of Mach number is also included for a representative tip planform. It is also shown that the induced drag of the tip surface is reduced for negative incidence angles relative to the inboard section. The results indicate that this local drag reduction overcomes the associated increase in wing induced drag at high wing lift coefficients

    Implications of gauge-mediated supersymmetry breaking with vector-like quarks and a ~125 GeV Higgs boson

    Full text link
    We investigate the implications of models that achieve a Standard Model-like Higgs boson of mass near 125 GeV by introducing additional TeV-scale supermultiplets in the vector-like 10+\bar{10} representation of SU(5), within the context of gauge-mediated supersymmetry breaking. We study the resulting mass spectrum of superpartners, comparing and contrasting to the usual gauge-mediated and CMSSM scenarios, and discuss implications for LHC supersymmetry searches. This approach implies that exotic vector-like fermions t'_{1,2}, b',and \tau' should be within the reach of the LHC. We discuss the masses, the couplings to electroweak bosons, and the decay branching ratios of the exotic fermions, with and without various unification assumptions for the mass and mixing parameters. We comment on LHC prospects for discovery of the exotic fermion states, both for decays that are prompt and non-prompt on detector-crossing time scales.Comment: 32 pages. v2: references added, figure caption 5.3 correcte
    • …
    corecore